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ABSTRACT. Using data from the National Study of Postsecondary Faculty and the
Early Childhood Longitudinal Study—Kindergarten Class of 1998–99, the author
provides guidelines for incorporating weights and design effects in single-level analy-
sis using Windows-based SPSS and AM software. Examples of analyses that do and
do not employ weights and design effects are also provided to illuminate the differ-
ential results of key parameter estimates and standard errors using varying degrees
of using or not using the weighting and design effect continuum. The author gives
recommendations on the most appropriate weighting options, with specific reference
to employing a strategy to accommodate both oversampled groups and cluster sam-
pling (i.e., using weights and design effects) that leads to the most accurate parame-
ter estimates and the decreased potential of committing a Type I error. However,
using a design effect adjusted weight in SPSS may produce underestimated standard
errors when compared with accurate estimates produced by specialized software
such as AM. 
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LARGE COMPLEX DATASETS are available to researchers through federal
agencies such as the National Center for Education Statistics (NCES) and the
National Science Foundation (NSF), to name just a few. Although these datasets
have become more readily accessible to researchers and statistical programs for
analyzing the data have become more user-friendly and capable of handling such
large datasets, there are two basic analytical issues that must be addressed by re-
searchers who are interested in generalizing to the population for which the
dataset is representative: the “superpopulation” compared with the “finite popu-
lation,” the population from which the sample was taken (Potthoff, Woodbury, &



Manton, 1992, p. 383). First, these samples are generally not collected using sim-
ple random sampling techniques. Most of these complex samples have been col-
lected by cluster sampling, stratified sampling, or multistage sampling because a
simple random sample is not feasible. There is no easily accessible list that ex-
ists, for example, of all children who attended kindergarten in 1998–1999 (i.e.,
the Early Childhood Longitudinal Study–Kindergarten Class of 1998–99, ECLS-
K). However, what is available is a list of schools (the second-stage sampling
unit) within counties (the primary sampling unit) that serve kindergarten stu-
dents. From the schools, therefore, students can then be identified (the third and
last stage of the sampling unit). Second, subsets of the population have been
oversampled. This type of sampling design creates challenges that must be ad-
dressed when performing statistical analyses to ensure accurate standard errors
and parameter estimates. The underlying assumptions of parametric statistical
procedures may be violated if the complex sampling design is not considered in
the analyses. However, research addressing methodological issues when dealing
with complex samples is negligible (Kaplan & Ferguson, 1999), and research
that uses extant data to study sample weights and design effects relating to
methodological procedures is scarce (Hahs, 2003). 

Survey weights and design effects are appropriate tools through which complex
sampling designs can be accommodated. However, guidelines on how to incor-
porate weights and design effects effectively in common statistical programs are
negligible, and guidelines on how to apply knowledge gained from simulation re-
search on this topic to extant data under different weighting options are few (e.g.,
DuMouchel & Duncan, 1983; Hahs, 2003; Korn & Graubard, 1995; Thomas &
Heck, 2001). Thomas and Heck provided guidelines for using weights and design
effects in SAS and SPSS, including programming codes for each. However, in-
structions on applying weights and design effects using Windows-based SPSS are
not available. A recent software program freely accessible online, AM, is an al-
ternative for analyses of national samples. However, because it is relatively new,
it has not received widespread review in the literature as an option. 

My purpose in this article is to assist in filling the void that currently exists on
understanding the intricacies of complex samples, specifically as it relates to the
use of weights and design effects in Windows-based SPSS and AM. Using the
National Study of Postsecondary Faculty (NSOPF:93) and the ECLS-K public
microdata, I provide guidelines on how to appropriately incorporate weights and
design effects in single-level analysis using Windows-based SPSS and AM. In
addition, I provide examples of analyses that do and do not employ weights and
design effects to illuminate the differential results of key parameters and standard
errors using varying degrees of using or not using the weighting and design ef-
fect continuum (no weights, raw weights, relative or normalized weights, and de-
sign effect adjusted weights). Recommendations on the most appropriate weight-
ing options are provided. In this study, I focus on researchers using data collected
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with a complex sampling design, such as those available through NCES or NSF,
and using single-level analyses that require an adjustment to the standard error to
ensure accurate parameter estimates and standard errors.

Model- and Design-Based Approaches

Two approaches have been suggested as ways to deal with homogeneous clus-
ters: (a) model-based and (b) design-based approaches (Kalton, 1983). Which ap-
proach is selected should be based on the research question. If a researcher is in-
terested in the clustered relationships as well as from the individual, a
model-based approach should be pursued. If a researcher is not interested in the
clustering effect but wants to focus the analysis on one level, treating the sample
as one group, then a design-based approach is appropriate (Thomas & Heck,
2001). 

Model-Based Approach

In a model-based approach (Kalton, 1983), the statistical methodology directly
incorporates the clustering in the analysis (Heck & Mahoe, 2004; Muthén &
Satorra, 1995). The variance of the dependent variable score is partitioned into
within- and between-variances, which are explained at each level by including
predictor variables hierarchically (Heck & Mahoe). Model-based approaches treat
the sample as one group and adjust variances to account for homogeneous clus-
ters (Heck & Mahoe). This process is also known as a disaggregated approach be-
cause the procedures disaggregate scores from an individual into their respective
cluster (Muthén & Satorra; Thomas & Heck, 2001). Examples of tools for model-
based approaches include multilevel structural equation modeling and hierarchi-
cal linear modeling. By design, a model-based approach negates the need to deal
with clustered and potentially homogeneous subsets (Thomas & Heck), although
oversampling must still be addressed (e.g., through the use of weights). 

Multilevel models are one way to account for multistage sampling, and these
have received substantial attention (e.g., Hox & Kreft, 1994; Kaplan & Elliott,
1997; Muthén, 1994). Not all researchers, however, may be interested in multi-
level modeling to account for the multistage sampling design (an example of
multilevel modeling is reviewing student-level variables as a function of school-
level variables, such as climate, policies, and resources; Kaplan & Elliott). Like-
wise, the available datasets may not have the appropriate institution-level vari-
ables for the specified model (Kaplan & Elliott). In those situations, a
design-based approach is appropriate.

Design-Based Approach

A design-based approach (Kalton, 1983), also known as an aggregated ap-
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proach, estimates a best overall model fit by focusing on only one level of the
analysis (i.e., single-level analysis; Thomas & Heck, 2001). Common statistical
procedures, such as analysis of variance and regression, are examples of design-
based tools because they do not automatically accommodate homogeneous clus-
ters. As stated previously, applying a design-based approach without correcting
for the possible bias resulting from homogeneous clusters underestimates the
true population variance (Hox, 1998). A number of strategies, ranging from using
specialized software to using a more conservative alpha level, have been pro-
posed when using design-based approaches that will generate accurate variance
estimates (e.g., Peng, 2000; Thomas & Heck). 

Design-Based Approach Strategies Using Weights and Design Effects

Weights

Unequal selection probability occurs when elements in the population are
sampled at different rates (Stapleton, 2002). A weight, in its simplest form, is the
inverse of the probability of selection (Kish, 1965). When the unit of analysis
(i.e., an individual) is sampled with unequal probability of selection, the sample
weight represents the number of units (i.e., individuals) in the population that
each unit (i.e., individual) represents (Korn & Graubard, 1995). Incorporating
weights in descriptive or inferential analyses is needed to compensate for the un-
equal probability of selection, nonresponse and noncoverage, and poststratifica-
tion (Kalton, 1989) and is often the easiest way to deal with disproportionate
sampling (Stapleton). Populations that are oversampled in national datasets have
a smaller weight value (Thomas & Heck, 2001). Ignoring disproportionate sam-
pling may result in biased parameter estimates and poor performance of test sta-
tistics and confidence intervals (Pfeffermann, 1993) as the weights are required
to produce estimates that are representative of the intended population (U.S. De-
partment of Education, 2002). Biased parameter estimates and poor performance
have been demonstrated using simulation in single-level structural equation mod-
eling (e.g., Kaplan & Ferguson, 1999) and using extant data in regression (e.g.,
Korn & Graubard). 

Korn and Graubard (1995) provided an example of weighted compared with
unweighted analyses. Using the 1988 National Maternal and Infant Health Sur-
vey, the authors presented four regression and logistic regression examples of
weighted and unweighted estimates using SUDAAN software to estimate stan-
dard errors. They illustrated how weighted and unweighted models differ when a
model is misspecified, when a covariate is omitted, and when interactions with a
covariate are not included. In these examples, differences in weighted and un-
weighted estimators of association could be eliminated by changing the model.
However, in the last example presented, it was shown that that strategy is not al-
ways possible. A cross-classification provided weighted and unweighted mean
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birthweights by mothers’ smoking status. The unweighted analysis overestimat-
ed the mean birthweight difference between mothers who did and mothers who
did not smoke because low-birthweight babies were oversampled. As suggested
by Korn and Graubard, the potential for bias that may result if weights are ig-
nored needs to be balanced with the increased variability of estimators when de-
signing a strategy for incorporating weights. The Korn and Graubard study points
to a broader reflection in light of weighted versus unweighted samples in that the
unweighted sample is only a “collection of individuals that represents no mean-
ingful population” (Kalton, 1989, p. 583). The results of analyses from un-
weighted samples cannot be generalized to any population other than that which
was included in the original sample (i.e., the finite population). In most cases,
this defeats the purpose of using a dataset that is nationally representative of
some underlying population. 

Once researchers have decided to incorporate sample weights, what do they do
next? The methodology reports that accompany the datasets provide intimate de-
tail into the calculation of weights, the various weights that are contained within
the dataset, and how to determine which weight is appropriate given the type of
analyses planned. For example, the ECLS-K methodology report provides a table
that lists the weight variable name and corresponding detail on the type of analy-
ses for which that weight is appropriate. For example, weight C123CW0 is de-
signed to be used for analysis of “child direct assessment data from fall- AND
spring-kindergarten AND fall-first grade, alone or in conjunction with any com-
bination of a limited set of child characteristics (e.g., age, sex, race-ethnicity)”
(Tourangeau et al., 2002, p. 5). Once the appropriate weight variable is deter-
mined, it is left to the researcher to apply it effectively in the analyses to correct
for oversampling in the design. How to effectively apply the weight can be in-
terpreted in terms of understanding the differences between raw, relative or nor-
malized, and design effect adjusted weights.

Raw weights. The weight provided in the dataset is a raw weight. The sum of the
raw weights is the population size, N (West & Rathburn, 2004). Therefore, esti-
mates derived from the application of raw weights to the data will be done based
on the population size, N, rather than on the actual sample size, n (Kaplan & Fer-
guson, 1999). Any estimates that are sensitive to sample size (e.g., standard er-
rors, test statistics), therefore, will be affected when using the raw weight (Kap-
lan & Ferguson). Statistical packages such as SPSS treat the sum of the weights
as the actual sample size. Thus, if the raw weight is used, tests of inference most
likely will be significant because the software is interpreting the population
rather than the sample size (Thomas & Heck, 2001).

Relative or normalized weights. Some authors, including Longford (1995),
Pothoff et al. (1992), and Thomas and Heck (2001), choose to label this weight
relative; others refer to it as normalized (e.g., Kaplan & Ferguson, 1999). Be-
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cause of its reference as normalized by NCES (West & Rathburn, 2004), I adopt
normalized as the label in this article, recognizing that the terms relative and nor-
malized are essentially interchangeable. Regardless of what the weight is labeled,
it is calculated by dividing the raw weight by its mean, thereby preserving the
sample size (Peng, 2000; Thomas & Heck). Normalized weights sum to the ac-
tual sample size, n (Kaplan & Ferguson; Pfeffermann, Skinner, Holmes, Gold-
stein, & Rasbash, 1998). Normalized weights address sample size sensitivity is-
sues while still incorporating sample weights (Kaplan & Ferguson). Applying the
normalized weight in the analyses ensures that the standard error estimates are
correct given a simple random sample (Thomas & Heck). Researchers should re-
member, however, that complex samples do not use simple random sample de-
signs. Therefore, an additional step to include design effects in conjunction with
the normalized weighted must be incorporated to recognize and adjust for po-
tential dependence among observations.

Design effect adjusted weights. The assumption of independent and identically
distributed observations is required for estimating accurate standard errors (Lee,
Forthofer, & Lorimor, 1989). Complex sample data usually have some degree of
dependence among the observations because of the multistage or clustered sam-
ple design (Stapleton, 2002). A comprehensive approach using weights and de-
sign effects in tandem compensates for dependence along with disproportionate
sampling and is detailed as one of the strategies for using design effects.

Design Effects

Multistage sampling is the process of subsampling clusters so that the ele-
ments are obtained from selecting sampling units in two or more stages (Kish,
1965). Many national datasets involve multistage sampling in which geographic
regions are first selected, then institutions, and finally students (Pratt et al.,
1996). It is possible that the observations within clusters are more alike in some
ways compared with observations in other clusters (Hox & Kreft, 1994). Because
of the similarities within clusters, the assumption of independence is negated
(Kish & Frankel, 1974), and the true population variance will be underestimated
(Hox, 1998; Selfa et al., 1997). Whether the assumption is mildly, moderately, or
severely violated, the reported probability intervals will reflect that same level in
its underestimation (i.e., mild, moderate, or severe underestimation; Kish &
Frankel). The design effect measures the impact of departing from simple ran-
dom sampling on sample estimate precision and is the ratio of the estimated vari-
ance of a statistic derived from considering the sample design to that derived
from the formula for simple random samples (Selfa et al.). 

As with the weights, the methodology reports that accompany the datasets pro-
vide lengthy tables of standard errors and design effects. For example, in the
NSOPF:93 methodology report, average design effects (DEFF) and the average
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of the square root of the design effects (DEFT) for total respondents and for 30
subgroups are presented for 30 randomly selected dichotomized items from the
faculty and institution questionnaires (Selfa et al., 1997). For groups formed by
subdividing those provided in the methodology reports (and when the variable
used to subdivide cuts across institutions), design effects will generally be small-
er because they are less affected by clustering than larger subgroups. Therefore,
using the subgroup mean DEFT is a conservative approach to estimating stan-
dard errors. For comparisons between subgroups, if the subgroups cut across in-
stitutions, then the design effect for the difference between the subgroup means
will be slightly smaller than the design effect for the individual means. The esti-
mate of the variance of the difference will be less than the sum of the variances
from which it is derived. Using DEFT is also conservative in calculating standard
errors for complex estimators, such as correlation and regression coefficients
compared with simple estimators (Kish & Frankel, 1974). Regression coeffi-
cients most often will have smaller design effects than comparisons of sub-
groups, and comparisons of subgroups often will have smaller design effects than
means (Selfa et al.). 

Various strategies have been proposed to accommodate for the homogeneous
clusters in single-level analyses using design effects: (a) specialized software, (b)
adjusted test statistic, and (c) normalized or relative weight adjusted by DEFF
(Thomas & Heck, 2001). A final and last resort strategy when no known DEFF
is available is to adjust the alpha level to a more conservative evaluation criteri-
on (Thomas & Heck). A discussion of the three most desirable strategies follows,
and examples using extant data are presented.

Strategy 1: Specialized software. Software packages such as WesVar, SUDAAN,
and STATA are designed to accommodate complex sampling assumptions (e.g.,
Thomas & Heck, 2001; West & Rathburn, 2004) but are not widely used by main-
stream researchers because of their cost or difficult use (Thomas & Heck). A rel-
atively new and freely accessible software package, AM, is now available, al-
though it is still in Beta testing (AM, n.d.). Made available by the American
Institutes for Research, AM is designed to be user-friendly and to accommodate
large-scale assessments. Using Taylor-series approximation, this software auto-
matically provides appropriate standard errors for complex samples. Although the
range of statistical tools in AM is not as broad as more popular packages such as
SPSS, it does offer regression, probit, logit, and cross-tabs, among others (AM).

Strategy 2: Adjusted test statistic. Using DEFT or DEFF, test statistic values can
be adjusted. In t tests, the test statistic should be divided by DEFT (West & Rath-
burn, 2004). In F tests, the test statistic should be divided by DEFF (West &
Rathburn). This strategy for accommodating homogeneous clusters tends to be
conservative, and thus a more liberal alpha level may be desirable (Thomas &
Heck, 2001). Adjusting the test statistic by DEFF or DEFT and conducting the
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analysis with a design effect adjusted weight produces approximately equivalent
parameters if the variances across groups are fairly equivalent (Thomas & Heck).

Strategy 3: Normalized weight adjusted by DEFF. Another alternative is to ad-
just the weight so that the adjusted standard error is derived (West & Rathburn,
2004). In this strategy, the effective sample size is altered by adjusting the nor-
malized weight downward as a function of the overall design effect (Peng, 2000;
Thomas & Heck, 2001; West & Rathburn). The adjusted weight is calculated by
dividing the normalized weight by DEFF. The analyses are then conducted by
applying the new, adjusted weight. 

Weights and Design Effects Applied in SPSS Using NSOPF:93

Converting a normalized weight (which corrects the sample for disproportionate
sampling) or design effect adjusted weight (which corrects the sample for oversam-
pling and multistage sampling; i.e., design effect Strategy 3) from a raw weight in
SPSS is a relatively simple process. This example uses the NSOPF:93 public mi-
crodata. Given that this is the public-use file, the variables provided are those that
were found to pose no potential threat of disclosure; thus, it is a limited dataset. The
NSOPF:93 was designed to collect data that are nationally representative of in-
structional faculty and staff and noninstructional faculty at public or nonproprietary
2-year and above postsecondary institutions. The NSOPF:93 used a multistage sam-
ple of institutions and faculty with stratified samples and differential probabilities of
selection. The first stage of sampling was at the institution level in which institutions
were stratified according to a cross-classification of control by type, specifically two
levels of control (public and private), and nine types of institutions based on
Carnegie classification. The NSOPF institutional sample frame was drawn from the
Integrated Postsecondary Education Data System. The second stage of sampling
was at the faculty level, using lists of faculty and instructors obtained from the in-
stitutions identified through the first stage of sampling. Using NSF and National En-
dowment for the Humanities (NEH) analytical objectives, faculty groups that were
oversampled included full-time females, Black non-Hispanics and Hispanics,
Asian/Pacific Islanders, and faculty in four NEH-designated disciplines. Thus, if
analyses are produced that do not appropriately apply weights, the results will be bi-
ased in favor of the groups that were oversampled (Selfa et al., 1997).

Raw Weight

The first objective in working with dataset weights is to determine which
weight is appropriate. Within the NSOPF:93 public dataset, there are approxi-
mately 130 ordinal variables based on faculty responses, 1 faculty respondent
raw weight variable (WEIGHT), and 32 replicate weights that can be used to cal-
culate standard errors. The replicate weights can be used in procedures such as
Jackknife Repeated Replication (JRR), Taylor-series estimation, or Balanced Re-
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peated Replications (BRR; Stapleton, 2002). As discussed previously, the
methodology reports are helpful in understanding which raw weight is the ap-
propriate selection given the type of analyses (e.g., cross-sectional, longitudinal,
multilevel). Given that this dataset has only 1 weight, selecting the appropriate
weight is relatively straightforward.

Normalized Weight

The normalized weight can be calculated in two ways: (a) using the derived
mean weight or (b) using the population and sample size. The normalized weight
can be computed by dividing the raw weight by its mean (Peng, 2000; Thomas
& Heck, 2001),

where wN is the normalized weight, wi is the raw weight for the ith observation,
and –w is the mean weight. In this example, the NSOPF:93 mean weight (derived
by using any of the appropriate descriptive statistics options in SPSS, such as fre-
quencies, descriptive, or explore) is 40.10729. A normalized weight (NORMWT)
can be computed easily in SPSS (Figure 1).

Using sample and population sizes in place of the mean value, the normalized
weight also can be derived as the product of the raw weight and the ratio of the
sample size to the population size (West & Rathburn, 2004),

wN = wi(n/N),

where wN is the normalized weight, wi is the raw weight for the ith observation,
n is the sample size, and N is the population size. To calculate the normalized
weight in SPSS using the sample and population sizes, first compute the sum of
the raw weight variable (i.e., the population size) and the number of valid cases
(i.e., the sample size) using any of the appropriate descriptive statistics options
in SPSS (e.g., frequencies, descriptive, or explore). This yields a population size
of 1,033,966 and a sample size of 25,780. A normalized weight can be comput-
ed easily in SPSS (Figure 2). The normalized weight can then be applied in the
analysis using “weight cases” from the data option in the toolbar (Figure 3).

Design Effect Adjusted Weight

Although the normalized weight takes into account disproportionate sampling,
it does so assuming a simple random sample. When a model-based approach is
not used, the design effect must be included in the analyses to account for the
clustered design and potential homogeneities that exist within the clusters. A de-
sign effect adjusted weight can be calculated by dividing the normalized weight
by the design effect of the outcome variable,
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In this example, the most appropriate design effect was located in the
NSOPF:93 methodology report (Selfa et al., 1997, p. 45). Not all variables that
may be of interest will have design effects provided in the methodology report.
In this example, for instance, the variable in our public dataset is publication pro-
ductivity over the past 2 years, whereas our design effect variable is more strict-
ly defined as publication productivity over the past 2 years in nonrefereed jour-

FIGURE 1. Computing normalized weight using the mean weight.

FIGURE 2. Computing the normalized weight using the population and sam-
ple size.



nals (DEFF = 3.48). When the design effect for a dependent variable used in a
study is not reported in the technical reports, the design effect for a similar vari-
able, the average design effect averaged over a set of variables, or the average de-
sign effect of the dependent variable averaged over subgroups of the independent
variable is appropriate to use (Huang, Salvucci, Peng, & Owings, 1996). Com-
puting an adjusted weight using the normalized weight in SPSS is illustrated in
Figure 4. The design effect adjusted weight can then be applied in the analysis
using “weight cases” from the data option in the toolbar (Figure 2).

Fluctuation of Parameter Estimates in Varying Applications of Weights

Comparison of Means and Standard Errors

An example of how means and standard errors from NSOPF:93 variables (see
Table 1 for variables, values, and labels) compare when weights are not used and
when using raw weights compared with normalized and design effect adjusted
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FIGURE 3. Applying the normalized weight.

FIGURE 4. Computing the design effect adjusted weight.



weights is provided in Table 2. Using the design effect adjusted weights ensures
that both disproportionate sampling and cluster sampling have been accounted for
and thus produces the most accurate estimates. The sample size is reflected in the
unweighted and normalized weighted models, and the population size is evident
in the raw weighted model. The design effect adjusted weight reflects neither the
sample nor the population size; however, this is not of concern to the researcher.
The importance of the design effect adjusted weight is that, with its application to
the data, the results reflect the underlying population (usually a nationally repre-
sentative sample) regardless of the sample size reflected from the analysis. 

As seen here, the means and standard errors of the unweighted variables dif-
fer when compared with the weighted means. Gender is a dummy-coded variable
with 0 = male and 1 = female. The mean for gender (i.e., the proportion of
women in the sample) is lower when no weight is applied, reflecting oversam-
pled women in the NSOPF:93 design. For all variables, the means are stable re-
gardless of which weight is applied. Because the population size is used in the
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TABLE 1. National Study of Postsecondary Faculty (NSOPF:93) Variables

Variable label Variable Value

Gender F51 1 = male; 0 = female

Total household income ($) E49 1 = 0–39,999
2 = 40,000–54,999
3 = 55,000–69,999
4 = 70,000–84,999
5 = 85,000–99,999
6 = 100K and up

Satisfied with job overall D40I 1 = Very dissatisfied
2 = Somewhat dissatisfied
3 = Somewhat satisfied
4 = Very satisfied

Number of for-credit classes taught C22A 0 = 0
1 = 1–2
2 = 3–4
3 = 5 and over

Productivity: 2 years, publications X13B20 0 = 0
1 = 1
2 = 2
3 = 3
4 = 4
5 = 5–9
6 = 10 and above
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derivation, the standard errors for the raw weighted sample are nearly nonexis-
tent. The standard errors are largest when using design effect adjusted weights,
approximately twice as large compared with the normalized weighted observa-
tions. This is expected as the standard errors are adjusted for the homogeneous
clusters present in the original sample design by using the design effect adjusted
weight. 

Comparison of Independent t Tests

The impact on estimates when weights and design effects are used or are not
used can also be illustrated in hypothesis tests. For example, I review a simple
independent t test using gender as the independent variable and number of pub-
lications in the past 2 years as the dependent variable. As seen in Table 3, al-
though the test is statistically significant in each case, the t test statistic varies
dramatically, as expected. The results using the design effect adjusted weights re-
flect the widest confidence interval distance of the mean difference (.208) com-
pared with the normalized weighted (.111), unweighted (.107), and raw weight-
ed (.01613) results. This is anticipated, given the larger standard error when the
cluster design is accommodated. Practical significance, as reflected in η2, is
largest for the design effect adjusted weighted sample and nearly twice as large
as either the unweighted or normalized weighted samples. Although interpreta-
tion of η2 is a small effect regardless of which model is reviewed (weighted or
unweighted), the larger effect size for the sample using the design effect adjust-
ed weight is important to consider. When similarities among clusters are accom-
modated by incorporation of the design effect, practical significance is illumi-
nated in the model. 

This example is simplistic, but it illuminates the potential for increased Type I
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TABLE 3. Comparison of Independent t Test Results With Weighting 
Options

Weighting SE of 95% CI
option t df difference p of difference η2

Unweighted 25.410 25420.693 .027 .000 .658, .765 .02443
Raw 180.581 942515.1 .004 .000 .799, .817 .03057
Normalized 28.513 23497.56 .028 .000 .753, .864 .03057
Design effect 

adjusted 15.283 6750.508 .053 .000 .704, .912 .03057

Note. Equal variances are not assumed. CI = confidence interval.



errors in hypothesis testing when ignoring the complex sampling design. It may
seem illogical to conduct tests of inference using the raw weight (i.e., the popu-
lation), but a novice researcher may mistake the application of the raw weight to
the analysis as appropriate compensation for the sampling design and oversam-
pled groups.

Although not shown here, adjusting the t test statistic of the normalized
weighted analyses by DEFT (Strategy 2) yields nearly identical conclusions as
when the design effect adjusted weight is applied to the sample.

Comparison of Weights on Multiple Linear Regression

As shown with the t test, similar weighted versus unweighted results are seen
from a simplistic multiple linear regression analysis. In this example, two com-
posite satisfaction variables are computed based on the results of a principal
components factor analysis: Predictor 1—satisfaction with teaching (sum of five
variables, such as satisfaction with quality of graduate students, satisfaction with
authority to decide on courses taught, and other), and Predictor 2—satisfaction
with job structure (sum of eight variables, such as satisfaction with workload,
satisfaction with advancement opportunities, satisfaction with salary, and other).
The two satisfaction variables, collectively explaining approximately 55% of the
total variance, serve as predictor variables with number of publications in the
past 2 years as the criterion variable. 

The correlation matrix (Table 4) indicates little difference between the un-
weighted and weighted models in the bivariate correlation between productivity
in publications and teaching satisfaction and no differences between satisfaction
with teaching and satisfaction with job structure. However, the bivariate correla-
tion between number of publications and satisfaction with job structure  indicates
a nonsignificant negative relationship when unweighted (r = –.002) and a posi-
tive relationship when weighted (r = .020). The positive bivariate relationship is
significant for the raw weighted sample but not significant for the design effect
adjusted weighted sample. Had a researcher used either the raw or normalized
weight and not accommodated for intracluster correlation, an erroneous decision
would have been made in interpreting the correlation between number of publi-
cations and satisfaction with job structure. Specifically, a different statistical de-
cision would have been reached, including possibly committing a Type I error. 

The multiple linear regression (Table 5) F test indicates an overall significant
regression model, regardless of using or not using a weight and regardless of
which weight was used. However, the F test statistic is substantially smaller
when the design effect adjusted weight is used. In the regression model, the re-
gression coefficients are stable regardless of the weight used. For Predictor 1
(satisfaction with teaching), the estimated regression coefficients are smaller (ap-
proximately 20%) when weights are applied compared with when weights are
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TABLE 5. Comparison of Multiple Linear Regression Results With 
Weighting Options in SPSS

Satisfaction with Satisfaction with
Statistic Intercept teaching job structure

B
Unweighted 1.732 .009 –.003
Raw weight 1.608 .007 .008
Normalized weight 1.608 .007 .008
Design effect adjusted weight 1.608 .007 .008

SE
Unweighted .067 .001 .003
Raw weight .011 .000 .000
Normalized weight .069 .001 .003
Design effect adjusted weight .129 .002 .006

β
Unweighted — .059 .006
Raw weight — .051 .017
Normalized weight — .051 .017
Design effect adjusted weight — .051 .017

t
Unweighted 25.907 9.413 –.928
Raw weight 147.299 51.524 16.984
Normalized weight 23.258 8.135 2.682
Design effect adjusted weight 12.466 4.360 1.437

p
Unweighted .000** .000** .354
Raw weight .000** .000** .000**
Normalized weight .000** .000** .007*
Design effect adjusted weight .000** .000** .151

Adjusted ANOVA 
Weighting option R2 R2 F p

Criterion variable: number of publications in past 2 years

Unweighted .003 .003 (2, 25777) = 44.351 .000**
Raw .003 .003 (2, 1033963) = 1536.386 .000**
Normalized .003 .003 (2, 25777) = 38.303 .000**
Design effect adjusted .003 .003 (2, 7405) = 11.003 .000**

*p < .01. **p < .05. ***p < .001.



not applied, and β is approximately 15% smaller when weights are applied. For
Predictor 2 (satisfaction with job structure), the estimated regression coefficients
are larger when weights are applied (over 2.5 times as large), and β is nearly 3
times larger when weights are applied. The standard error parameter estimates
are largest for the design effect adjusted weighted model, as expected. The t test
statistics are smallest for the design effect adjusted weighted sample, compara-
tively half the size of the unweighted and normalized weighted samples. As ex-
pected, the raw weighted sample produces the largest t statistic given the popu-
lation size associated with the raw weight. The striking differences in the t
statistic values are then evident in variable significance. Significance is stable for
the intercept and Predictor 1 (satisfaction with teaching) regardless of using or
not using a weight. However, Predictor 2 (satisfaction with job structure) is sig-
nificant only when the raw and normalized weights are applied. Again, had the
researcher believed that weighting the sample without consideration of intraclus-
ter correlation was sufficient, a different statistical decision would have been
reached, including the possibility of a Type I error.

Weights and Design Effects Applied in AM Using ECLS-K

The public-use NSOPF:93 dataset does not contain strata or cluster variables;
therefore, analyzing the data using specialized software such as AM is not ad-
vantageous for that particular dataset. To illustrate the use of specialized software
for dealing with complex sample designs using AM, I used the NCES ECLS-K
public-use dataset. The ECLS-K is one of two cohorts (the other being a birth co-
hort) that make up the ECLS longitudinal study. The ECLS-K provides descrip-
tive data on children at entry and transition into school and progress through
Grade 5. Family, school, and community variables, along with individual vari-
ables, are available. Using a multistage probability sample design to select a na-
tionally representative sample of children attending kindergarten in 1998–1999,
the primary sampling units (PSUs) were geographic areas (counties or groups of
counties). Schools were the second-stage units within PSUs sampled, and stu-
dents within schools were the third-stage units. In the base year, Asian/Pacific Is-
landers were oversampled. A subsample of ECLS-K PSUs was selected for the
fall first-grade data collection (U.S. Department of Education, 2002). In this ex-
ample, only students who had scores on the first three reading assessments (read-
ing IRT scale score in fall kindergarten, C1RRSCAL; reading IRT scale score in
spring kindergarten, C2RRSCAL; and reading IRT scale score in fall first grade,
C3RRSCAL) were included in the subset analyzed.

AM software can be downloaded free of charge from http://www.am.air.org.
The first step in using AM software is to import data. Bringing SPSS data files
into AM is an easy process using the import function (Figure 5). Once the data
are brought into AM, designating the weight is performed by right clicking on
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the weight variable and selecting “edit metadata.” This will bring up a dialog box
that allows the researcher to assign the variable the role of weight (Figure 6). The
strata and cluster (PSU) variables in the dataset must also be defined using this
same process.

A number of basic statistics can be generated using AM software (Figure 7).
In this example, I conduct a multiple linear regression using reading IRT scale
scores from fall and spring kindergarten as the predictor variables and reading
IRT scale score from fall first grade as the criterion variable. The independent
and dependent variables are dragged from the left column into their respective di-
alog boxes on the right. Users also have the option of selecting how the output is
generated (Web browser, spreadsheet, or text file; Figure 8). Once all the vari-
ables and options are defined, click “OK” to generate the output.

FIGURE 5. Importing SPSS data into AM. 

FIGURE 6. Designating the role of weight, strata, and cluster variables. 
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As anticipated, ignoring the complex sample design in AM software compared
with defining the weight, cluster, and strata produces underestimated standard er-
rors and inflated test statistic values (Table 6). Differences in slope and regres-
sion estimates are also present. When weights are ignored, the fall kindergarten
reading score predictor has a smaller estimate, and the intercept and spring

FIGURE 7. Generating basic statistics with AM.

FIGURE 8. Model specification.
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kindergarten reading score predictor have a larger estimate compared with the es-
timates produced when the weight, cluster, and strata are defined.

Weights and Design Effects Applied in SPSS Using ECLS-K

How do estimates fare from the same model when using SPSS? Using SPSS,
I created a normalized weight by dividing the panel weight (C123CW0) by the
mean weight of the entire sample (224.1938). The design effect adjusted weight
was derived from the ratio of the normalized weight to the design effect for first-
grade reading IRT scale score (C3RRSCAL; DEFF = 5.291). As with the analy-
ses using the AM software, only students who had scores on the first three read-
ing assessments (reading IRT scale score in fall kindergarten, C1RRSCAL;
reading IRT scale score in spring kindergarten, C2RRSCAL; and reading IRT
scale score in fall first grade, C3RRSCAL) were included in the subset analyzed.

The influence of using or ignoring weights and design effects in SPSS is illus-
trated when comparing the various models (Table 7). The differences between es-
timates and test statistic values of unweighted, raw weighted, normalized weight-
ed, and design effect adjusted weighted samples are similar to the results generated

TABLE 7. Comparison of Early Childhood Longitudinal Study—Kindergarten 
Class of 1998–1999 (ECLS-K) Multiple Linear Regression Results With 
Weighting Options Using SPSS Software

B SE

Variable U Raw N A U Raw N A

Intercept 4.264 4.214 4.214 4.214 .260 .009 .136 .313
Reading IRT scale 

score (fall 
kindergarten) .200 .216 .216 .216 .016 .001 .008 .019

Reading IRT scale 
score (spring 
kindergarten) .891 .884 .884 .884 .013 .000 .007 .015

Unweighted Raw

R 2 .823 .817
ANOVA F (2, 4333) = 297191.083* (2, 3531848) = 7886407*

Note. Criterion variable = reading IRT scale score, fall first grade. U = unweighted. 
N = normalized weighted. A = design effect adjusted weighted.
*p < .01. **p < .05. ***p < .001.
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using the NSOPF:93 data in a multiple regression procedure (specifically, larger
standard errors and smaller test statistic values with the design effect adjusted
weighted sample). Therefore, I focus on the differences of estimates, standard er-
rors, test statistic values, and significance of the AM versus the SPSS analyses. 

ECLS-K Results: AM Versus SPSS

AM software allows the researcher to accommodate the weight, strata, and
cluster variables specifically; therefore, correct standard error estimates are pro-
duced when the variables are defined in these roles. The differences in the un-
weighted SPSS model compared with the unweighted AM model may be due to
the assumption in SPSS of homoscedastic residuals (J. Cohen, personal commu-
nication, May 18, 2004). The calculation of standard errors in AM does not have
this assumption (Cohen). The noticeable differences in standard errors are, there-
fore, most likely caused by a violation of the homoscedastic residual assumption.
Thomas and Heck (2001) found conservative standard errors were produced
when using design effect adjusted weights as when using SAS PROC SUR-
VEYREG, a recent SAS procedure that allows for adjustment of standard errors

t p

U Raw N A U Raw N A

Normalized Design effect adjusted

.817 .817
(2, 15751) = 35170.069* (2, 2974) = 6641.717*

16.405 464.275 31.004 13.473 .000* .000* .000* .000*

12.839 385.173 25.722 11.178 .000* .000* .000* .000*

70.881 1971.980 131.689 57.227 .000* .000* .000* .000*



for complex samples, and this was also the case in this analysis. Design effect ad-
justed weights produced underestimated standard errors in SPSS compared with
the correct standard errors using the weight, strata, and cluster variables in AM
software. SPSS produced larger test statistic values. Although rejection of the hy-
potheses remains the same across all models, the larger standard errors and re-
sulting smaller test statistic values generated when using the AM software sug-
gest that, given a different model, the chance of committing a Type I error will
increase substantially when using design effect adjusted weights in SPSS. 

To remove the potential impact of multicollinearity between the independent
variables (r = .817), a linear regression was generated using only spring kinder-
garten item response theory [IRT] reading scale scores to predict fall first-grade
reading IRT scale scores. I used the appropriate weight (C23CW0) and mean
weight (224.2039) to first create a normalized weight and then a design effect ad-
justed weight. Because the dependent variable remained the same, the same
DEFF (5.291) was applied. Comparing AM with SPSS results in this simplified
model, similar outcomes were produced compared with the multiple linear re-
gression model. The estimates from the unweighted models were different. AM
produced larger standard errors and smaller test statistics compared with those
from the unweighted sample in SPSS. When applying design effect adjusted
weights in SPSS and the appropriate weight, strata, and cluster variable in AM,
standard errors in SPSS were more than 60% smaller than those produced using
AM. In addition, test statistic values were larger in SPSS. Therefore, assuming
accurate standard errors, estimates, and test statistics are generated using AM
software, if design effect adjusted weights are applied in SPSS, the researcher
should consider using a more conservative alpha level. 

Recommendations

Two of the most critical components to consider when using national datasets
that employ a complex design are the use of weights and variance estimation
(Peng, 2000). Ignoring disproportionate sampling may result in biased parame-
ter point estimates as a result of oversampled populations, and ignoring multi-
stage sampling runs the risk of underestimated standard errors caused by homo-
geneous clusters and potentially increased Type I errors (Stapleton, 2002). Poor
performance of test statistics and confidence intervals are also an increased pos-
sibility (Pfeffermann, 1993). I stand in agreement with Kalton (1989, p. 579)
who stated, “my own view is that in most—but not all—circumstances it is
preferable to conduct a weighted analysis and to compute standard errors appro-
priate for the sample design employed.” Similar statements have been echoed by
other researchers (e.g., Pfeffermann; Thomas & Heck, 2001) and generalized to
most social scientists and survey statisticians (Hoem, 1989).

Variance estimation can be performed by an exact method (e.g., using special-

244 The Journal of Experimental Education



ized software) as introduced in Strategy 1 or by an approximation method (e.g.,
applying the design effect in tandem with the weights) as introduced in this arti-
cle in Strategies 2 and 3. The use of specialized software will yield exact vari-
ances as they are designed to accommodate the clustering effect. Therefore,
when specialized software (e.g., AM, SUDAAN, WesVar) provides the appropri-
ate methodological features to answer the research question and is accessible to
the researcher, this is the most desirable solution for analyzing data from com-
plex samples. 

However, not all researchers have access to specialized software other than
AM. Although AM is free to download online, it is still in the Beta testing ver-
sion and not all statistical procedures are available that may be desired. It has
been argued that multilevel modeling (i.e., model-based approach) is the appro-
priate statistical strategy for analyzing multistage samples. However, multilevel
modeling is not always appropriate for complex surveys, and not all researchers
may be interested in multilevel modeling (Kaplan & Elliott, 1997). The available
datasets may not have the appropriate institution-level variables for the specified
model (Kaplan & Elliott). For example, Kaplan and Elliott used the National Ed-
ucational Longitudinal Study of 1988 (NELS:88; Huang et al., 1996) to study
critical transitions experienced by students as they leave elementary school and
progress to higher levels of schooling. Kaplan and Elliott selected a subset of
variables from the student survey, teacher survey, and school survey, resulting in
a sample size of 1,165 and a school-level sample size of 356. Although the struc-
tural equation model indicated adequate fit, the observed effects were quite small
overall—leading the authors to conclude that this result was owed in part “to the
fact that the NELS:88 test has too few items to be sensitive to school or class-
room instructional indicators” (p. 342). It can be argued whether accurate param-
eter estimates based on weight and design effect corrections in a design-based
approach or good overall model fit through the application of a model-based ap-
proach are more important. However, an overall good model fit that reflects in-
accurate parameter estimates seems of ill use. 

When a multilevel model is not appropriate or not desirable, a single-level
model or design-based approach can be employed. When a single-level model is
used, the researcher is faced with the same concern as when using model-based
approaches in how to accurately adjust the data to ensure unbiased estimates
caused by the oversampled groups (i.e., the use of weights) and is faced with an
additional concern about the potential homogeneous clusters that exist as result
of multistage sampling (i.e., the use of design effects). Design effect Strategies 2
and 3 presented in this study illustrate how design effects can be applied in con-
junction with weights to produce more accurate standard errors. If the researcher
does not want to deal with applying either DEFF or DEFT to each analysis as
presented in Strategy 2, then Strategy 3 is the most viable option. Strategy 3 pro-
vides the most straightforward accommodation of homogeneous clusters because
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the design effect for the dependent variable is applied directly to the weight to
create a new, adjusted weight. 

There are a number of forms that the weight variable can assume: raw, normal-
ized, and design effect adjusted. Of these, the most appropriate to apply to stud-
ies that use design-based approaches when specialized software is not available is
the design effect adjusted weight. Although the normalized weights reflect the
sample size rather than the population size, the estimates generated using normal-
ized weights are reflective of a simple random sample because the nesting nature
of the clusters is not taken into account, and the result is underestimated standard
errors. The result of using normalized weights in design-based approaches is un-
derestimated standard errors and inaccurate test statistics, among others. As seen
in the examples presented in this article, employing a strategy to accommodate
both oversampled groups and cluster sampling (i.e., using weights and design ef-
fects) leads to the most accurate parameter estimates and the decreased potential
of committing a Type I error. This suggestion has been recommended by other re-
searchers (e.g., Thomas & Heck, 2001) and is recommended here. However, using
a design effect adjusted weight in SPSS may produce underestimated standard er-
rors when compared with accurate estimates produced by specialized software,
such as AM. The examples presented here are simplified, however, and results
may differ using other variables. On a final note, comparing weighted with un-
weighted models has been done (e.g., DuMouchel & Duncan, 1983) and is the
suggested process by Skinner, Holt, and Smith (1989) to determine model ade-
quacy. As shown in some of the examples presented here, inference may not
change from the unweighted to weighted models. However, if a researcher goes to
the trouble of analyzing weighted and unweighted data, failing to report the most
accurate results (as reflected in the design effect adjusted weighted analysis) is
cause for concern. Although statistical significance may not change from weight-
ed to unweighted results, that may not be the case with measures of effect.

Researchers who use secondary data should anticipate a learning curve prior
to beginning the data analysis. An investment of time in reading the methodolo-
gy reports to understand the sampling design and any oversampling is important.
In general, if a complex sample design is used and the study has oversampled one
or more groups and a single-level analysis (or design-based approach) is applied,
weights and design effects need to be incorporated in the analysis. The strategies
presented will assist researchers who are new or less experienced with weights
and design effects in understanding the application of these strategies to sec-
ondary data. 

Future Research

There are a number of areas ideal for future research. Extant data studies that
continue to explore methodological procedures when using weights and design
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effects with complex samples are needed to further clarify appropriate proce-
dures. Simulation and extant data studies that compare results of the application
of weights and design effects to single-level models (i.e., design-based ap-
proaches) with results obtained from model-based approaches to determine the
extent the results differ may also enlighten this line of research. 
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